
Authorized licensed use limited to: IEEE Xplore. Downloaded on February 9, 2009 at 20:00 from IEEE Xplore. Restrictions apply.

IT Monoculture

the monoculture risk
Put into Context

Conventional wisdom holds that software monocultures

are exceptionally vulnerable to malware outbreaks. The

authors argue that this oversimplifies and misleads.

An analysis based on attacker reactions suggests that

deploying a monoculture in conjunction with automated

diversity is indeed a very sensible defense.

Fred B. he term monoculture originates in the biologi •	 the widespread
Schneider cal sciences, where it refers to a population dependence on computing systems for day-to-day
and Kenneth entirely comprising instances of a single or- operations, and
P. Birman T ganism. Monocultures are rare in nature, and •	 the interconnection of computing systems, which
Cornell for good reason: they risk extinction from pathogens enables computers to exchange content (including
University and have less chance of adapting to changing condi malware).

tions. A pathogen could destroy some members of a
diverse population but not all of them—diversity thus These trends are somewhat incompatible. The first
helps ensure survival of the population. implies that an organization’s computing infrastruc-

Although nature abhors monocultures, cyberspace ture must be trustworthy for that organization to sur
seems to favor them. A collection of identical comput vive; the second means malware has an efficient way
ing platforms is easier, hence cheaper, to manage be- to attack, propagate, and compromise all members
cause mastering one interface and making one set of of the organization’s computing infrastructure. The
configuration decisions suffices for all. In addition, user prospect of a computer monoculture thus terrifies
training costs are reduced when job transfers do not computer security experts.
have the overhead of learning yet another operating This terror is senseless. We argue in this article that
system and suite of applications; investments in educa a monoculture might well be a good cyberdefense
tion about how to use or manage a system also can be strategy—at least for today. We also outline the kinds
amortized over a larger user base in a monoculture. Fi of attacks that likely will be launched when a mon
nally, interoperability of a few different kinds of systems oculture defense is put in place, and we discuss what
is far easier to orchestrate than integrating a diverse col- must be done to defend against them. Our analysis is
lection, standards not withstanding. So networking is holistic, based on how defenses and attacks are likely to
usually easier to support within a monoculture. coevolve. Although viewing the landscape in terms of

Mindful of these advantages, the public and private the attacker reactions evoked by successive generations
sectors both tend to adopt procurement policies that of defenses is unusual, we found it an enlightening ex-
foster creating computer monocultures. The past five ercise and believe it might well be a useful standard
decades of computer usage in organizations has been against which future defenses ought to be evaluated.
a series of epochs, each one characterized by a single
dominant instruction set architecture and operating Vulnerabilities and Defenses
system. Today it is Intel’s x86 architecture running Different classes of attacks warrant different defenses.
Microsoft’s software. For the discussion that follows, we group attacks into

Two things are different today than in the past, three classes. (We have not tried to prove that these
though: classes cover all possible attacks or that they actually

14 Published by the ieee ComPuter soCiety ■ 1540-7993/09/$25.00 © 2009 ieee ■ ieee seCurity & PrivaCy

http:1540-7993/09/$25.00

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 9, 2009 at 20:00 from IEEE Xplore. Restrictions apply.

IT Monoculture

constitute a partition on the space. The analysis in this
article, however, depends on neither.) A configuration
attack exploits a vulnerability introduced by the ven
dor-supplied default configuration, system adminis
trator, or user who configures the software. Modern
software systems are quite flexible, employing con
figuration files and global databases to customize each
installation. Whether this customization is automated
or manual, misconfiguration is a common source of
vulnerabilities. Moreover, even when customization
is not undertaken, vendor-supplied default configu
ration files historically have all too often permitted
improper access to privileged functionality.

A technology attack exploits programming or design
errors in software running on the target. All large sys
tems have bugs, a situation that is not likely to change
anytime soon. Inadequate specifications are also a se
rious problem, so even software that does what it was
designed to do could have unintended side effects at
tackers can exploit. Thus, large systems invariably are
vulnerable to technology attacks. Choosing the pro
gramming language wisely and using other software
engineering tools can help software developers to
eliminate some vulnerabilities, but the full spectrum
of software issues is unlikely to yield to any technique
known or even on the horizon.

Networked systems admit the possibility of trust at
tacks. In them, one computer satisfies a request from
another because it trusts the source of the request, but
in fact the source has already been compromised by an
attacker. Of particular concern in the world of “cloud
computing” is the tendency to group networked com
puters into enclaves, in which requests from within
the enclave are deemed more trustworthy than those
from outside. Once the attacker has compromised any
computer in the enclave, the entire enclave is poten
tially at risk. Trust in the network itself is also a serious
problem. Today, routing and address-mapping in the
Internet are easy to compromise, Web pages can and
are modified en route, and even the act of rendering a
Web page can place a client system at risk due to the
growing prevalence of scripting.

Defending Against
Configuration Attacks
Configuration errors are an overwhelming source
of vulnerability in today’s systems and are particu
larly easy to exploit. Deploying a monoculture helps
defend against such attacks because a single locked-
down, well-understood configuration will have fewer
vulnerabilities by virtue of the care invested in con
structing that configuration. Even when systems are
complex and configurations are unavoidably location-
and user-specific, deploying a limited number of pre-
analyzed configurations might suffice to cover most
needs without exposing known vulnerabilities.

In contrast, deploying a highly diverse system en
tails configuring each platform separately and ensuring
that all of these different configurations are mutually
compatible. Such an undertaking is an error-prone
process.1 Our conclusion is that if you believe con
figuration errors are a significant vulnerability today,
then devoting the effort to eliminate configuration
errors and then switching to a monoculture can be a
cost-effective defense. However, if this course is pur
sued but configuration errors remain, then the payoff
from a successful attack can be considerable.

Defending Against
Technology Attacks
Reduce the opportunities for configuration attacks
by deploying a monoculture of carefully analyzed
configurations, and attackers will pursue technol
ogy attacks; thus, defenders must be prepared for that
eventuality.

Defending a monoculture against technology at
tacks raises two separate issues. The first concerns
defending against technology attacks per se on each
platform—this depends only on the platform and not
on the networked system in which it operates. The
second issue is to increase the work an adversary re
quires to develop and launch technology attacks that
spread rapidly and compromise a significant fraction
of the individual platforms that make up the net-
worked system. Monocultures benefit attackers here
to the extent that attacks succeeding on one platform
are likely to succeed on all.

A defense that addresses both issues is to use tools
that automatically introduce diversity into the code
executed on individual platforms. Various approaches
have been proposed, including: relocation or padding
the runtime stack by random amounts,2–4 rearranging
basic blocks and code within basic blocks,2 randomly
changing the names of system calls5 or instruction op
codes,6–8 and randomizing the heap memory alloca
tor.9 Some of these forms of artificial diversity are highly
effective; others somewhat less so. For example, Hov
av Shacham and colleagues derive experimental lim
its on the address space randomization scheme10 that
Jun Xu and colleagues proposed,4 while Ana Sovarel
and colleagues’ work11 discusses the effectiveness of
instruction set randomization and outlines some at
tacks against it.

In all cases, artificial diversity defends against attacks
by changing aspects of the implementation in ways that
force attackers to individualize exploits. With code or
storage layout no longer easily predictable, executing
an attack is likely to raise a runtime error after a small
number of instructions. So attacks that seek to com
promise integrity or confidentiality will not succeed;
the inputs will either be rejected or, in the worst case,
cause the platform to crash. The defense, however, is

www.computer.org/security/ ■ ieee seCurity & PrivaCy 15

www.computer.org/security

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 9, 2009 at 20:00 from IEEE Xplore. Restrictions apply.

IT Monoculture

probabilistic with respect to any given individual plat
form. First, an attack might be wholly unaffected by
changes that artificial diversity introduces, because the
attack does not depend on the changed implementation
details at the target platform. (Certain forms of artificial
diversity, though, affect just about all the software that
executes on a platform—randomizing the names of sys
tem calls or instruction opcodes, for example.) Second,
even attacks that fail, if repeated with enough different
variants or if they yield detailed knowledge of the ex
ecutable running on some target, might tell an attacker
enough to craft an attack that works; the determined
attacker can thus expend effort and increase the chances
of success (the usual trade-off for a defense).

Note that artificial diversity does not protect against
interface attacks, which involve exploiting desired func
tionality in unintended ways. Attacks packaged as
scripts to be executed by an interpreter are prominent
examples. The interface to the interpreter cannot be
changed because scripts sometimes come from outside
of the organization. And adding artificial diversity to
the implementation of the interpreter does not change
the effects of executing a script, hence does not defend
against scripts that contain attacks.

By converting some attacks into crashes, artificial di
versity can adversely affect a system’s availability. Some
systems will tolerate transient outages of individual plat
forms (perhaps recovering from crashes by running yet
a different version of the implementation), but even sys
tems that use replication to mask outages are limited by
a fixed number of replicas. Thus, there is some probabil
ity that an attack might cause too many of the individual
platforms that constitute a system to crash, thereby com
promising the system’s availability. The shape of such
probability distributions is not well understood; they
depend on the space and probability of various attacks,
as well as the kind of artificial diversity.

Beyond defending individual platforms and sys
tems, artificial diversity serves as an antidote to a
monoculture’s vulnerabilities. A platform that crashes
in response to any attack cannot then help propagate
that attack to other platforms and signal to system op
erators that something is wrong, thereby inviting the
use of other means (which might well be out of band)
to prevent the spread of whatever malware is serving
as the attack vector. So, the spread of attack vectors
that monocultures otherwise enable is slowed by ar
tificial diversity. And this defense works in a man
ner complementary to other defenses for blocking the
spread of malware through technology attacks.

One hesitation software developers voice about ar
tificial diversity involves testing and debugging. With
each deployed system having different internals, test
ing can now cover only a small fraction of what gets
fielded. Moreover, when a system does crash, dumps
and other diagnostic information must be interpreted

in light of the diversity now present in the specific
platform, which requires somewhat more sophisticat
ed debugging and monitoring tools. These problems
are far from insurmountable given modern program
ming environments. Microsoft’s Vista, for example,
is a widely deployed operating system that supports
address-space randomization.

Critics of software monocultures advocate us
ing true diversity for slowing the spread of malware
perpetrating a technology attack. Different interfaces
and operations having different semantics means true
diversity can sometimes prevent interface attacks,
whereas artificial diversity never can. However, with
different interfaces and functionality, individual sys
tems could in aggregate exhibit more different vul
nerabilities, which helps attackers. Moreover, the cost
of building (or acquiring) many different instances of
the same kind of system is likely to be prohibitive for
a system with thousands of workstations, as found in
a moderately sized organization. And simply having
independent teams build separate systems from the
same specification does not preclude these systems
from having identical vulnerabilities—for example,
all teams might misinterpret a confusing specification
in the same way. Finally, with true diversity, we again
face the prospect of different configurations, so we
lose one of the benefits of a monoculture.

Defending Against Trust Attacks
Diversity, whether artificial or true, multiplies the
number of distinct attacks that can compromise some
platform someplace in the system. An attack that fails
at one platform might succeed at another. So instead of
seeking an attack for a particular platform instance, an
attacker could flood a network or individually probe
all platform instances with a single attack. Some in
stance might succumb. If one does, and if other plat
forms are vulnerable to trust attacks, then the attacker
can compromise those other platforms as well.

Thus, after deploying a monoculture to defend
against configuration attacks and employing artificial
diversity to help resist technology attacks, we should
institute defenses against trust attacks. One obvious
solution is to revisit the practice of decomposing net-
worked systems into enclaves in which sites within
an enclave trust each other more than they trust sites
outside of the enclave. Another solution, long advo
cated but difficult to manage in practice, would be
to employ fine-grained least-privilege authorization
policies so that the operations one site performs on be
half of another are limited in scope and consequence.

W ith
on

 only finite resources, you should focus on
ly those threats perceived to be real. Knowl

edge of the threats—including resources available to

16 ieee seCurity & PrivaCy ■ January/February 2009

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 9, 2009 at 20:00 from IEEE Xplore. Restrictions apply.

IT Monoculture

them, likely expertise, and probable goals—helps iden
tify the targets that must be defended and predict what
kinds of attacks are plausible. Our analysis in this ar
ticle is predicated on a presumption that the low-hang
ing fruit for attackers today is configuration attacks. It
would be nice to have that assumption validated, but
even without that validation, our arguments clearly
show that it is naive to regard deploying a monoculture
as a risk that cannot be mitigated. On the contrary, we
find many reasons to believe that a monoculture could
be made far more robust than what it likely replaces.

The deployment of a monoculture should be
viewed in the context of how it affects the evolution
of attacker responses to defenses. Whereas defenders
today cannot hope to defend against all attacks, they
can deploy defenses with an eye toward anticipating
the vulnerabilities new generations of attacks will
exploit. A monoculture defends against some attacks
(configuration attacks) but creates new vulnerabilities
to technology attacks; employing artificial diversity
in this monoculture defends against some of those
technology attacks but could increase vulnerability to
trust attacks; and so on.

The characterization of monoculture in this article
is particularly well suited for understanding the effects
of procurement policies that restrict computer plat
form acquisitions to systems from a single vendor run
ning a standard configuration. This, however, is not
the only way in which a monoculture might arise. Any
standard will create a kind of monoculture—namely,
the ubiquitous deployment of interfaces and services
implementing that standard. And the more widely ad
opted the standard, the greater the incentive for devel
oping attacks. For example, Web services will admit
technology attacks that not only involve exploiting the
semantics of system internals but also might involve
the interfaces themselves. The diversity defense is not
currently an option for defending against attacks that
exploit the misguided semantics of an interface.

Acknowledgments
We are grateful to C. Chandersekaran, Jay Lala, Butler Lamp-
son, John Manferdelli, Gene Spafford, and Vijay Varadharajan
for their thoughts on monocultures topic and to the partici
pants of the AFOSR workshop on Homogeneous Enclave
Software vs. Controlled Heterogeneous Enclave Software.
We also thank two anonymous reviewers. The authors are
supported in part by AFOSR grant F9550-06-0019, AFOSR
grant FA9550-07-1-0569, and US National Science Founda
tion grants 0430161 and CCF-0424422 (TRUST).

References
1.	 D. Oppenheimer, A. Ganapathi, and D.A. Patterson,

“Why Do Internet Services Fail, and What Can Be
Done About It?” Proc. 4th Usenix Symp. Internet Tech
nologies and Systems, Usenix Assoc., 2003, pp. 1–16.

2.	 S. Forrest, A. Somayaji, and D.H. Ackley, “Building Di
verse Computer Systems,” Proc. 6th Workshop Hot Topics
in Operating Systems, IEEE CS Press, 1997, pp. 67–72.

3.	 S. Bhatkar, D.C. DuVarney, and R. Sekar, “Address
Obfuscation: An Efficient Approach to Combat a Broad
Range of Memory Error Exploits,” Proc. 12th Usenix
Security Symp., Usenix Assoc., 2003, pp. 105–120.

4.	 J. Xu, Z. Kalbarczyk, and R.K. Iyer, “Transparent
Runtime Randomization for Security,” Proc. 22nd Int’l
Symp. Reliable Distributed Systems (SRDS 03), IEEE CS
Press, 2003, pp. 260–269.

5.	 M. Chew and D. Song, Mitigating Buffer Overflows by
Operating System Randomization, tech. report CMU
CS-02-197, School of Computer Science, Carnegie
Mellon Univ., 2002.

6.	 G.S. Kc, A.D. Keromytis, and V. Prevelakis, “Coun
tering Code-Injection Attacks with Instruction-Set
Randomization,” Proc. 10th ACM Conf. Computer and
Communications Security (CCS 03), ACM Press, 2003,
pp. 272–280.

7.	 E.G. Barrantes et al., “Randomized Instruction Set
Emulation to Disrupt Binary Code Injection Attacks,”
Proc. 10th ACM Conf. Computer and Communications Se
curity (CCS 03), ACM Press, 2003, pp. 281–289.

8.	 E.G. Barrantes et al., “Randomized Instruction Set
Emulation,” ACM Trans. Information and System Security,
vol. 8, no. 1, 2005, pp. 3–40.

9.	 E.D. Berger and B.G. Zorn, DieHard: Probabilistic
Memory Safety for Unsafe Languages, tech. report 05-65,
Dept. of Computer Science, Univ. of Massachusetts
Amherst, 2005.

10. H. Shacham et al., “On the Effectiveness of Address-
Space Randomization,” Proc. 11th ACM Conf. Com
puter and Communications Security (CCS 04), ACM Press,
2004, pp. 298–307.

11.	 A.N. Sovarel, D. Evans, and N. Paul, “Where’s the
FEEB?: The Effectiveness of Instruction Set Random
ization,” Proc. 14th Usenix Security Symp., Usenix As
soc., 2005, pp. 145–160.

Kenneth P. Birman is a professor at Cornell University’s com

puter science department. His research interests focus on

challenges of scalability, fault tolerance, and consistency in

distributed systems. Birman is probably best known for de

veloping the virtual synchrony replication model and the Isis

Toolkit, the first system to support that model. He has a PhD

in computer science from the University of California, Berkeley.

He is a fellow of the ACM and the author of three textbooks,

most recently Reliable Distributed Systems: Technologies,

Web Services, and Applications (Springer Verlag, 1996).

Contact him at ken@cs.cornell.edu.

Fred B. Schneider is a professor at Cornell University’s com

puter science department and chief scientist for the multi-uni

versity TRUST NSF-funded Science and Technology Center. A

more detailed biography appears on p. 13.

www.computer.org/security/ ■ ieee seCurity & PrivaCy 17

www.computer.org/security
mailto:ken@cs.cornell.edu

