INTERNATIONAL FOOD SECURITY: THE ROLE OF SCIENCE

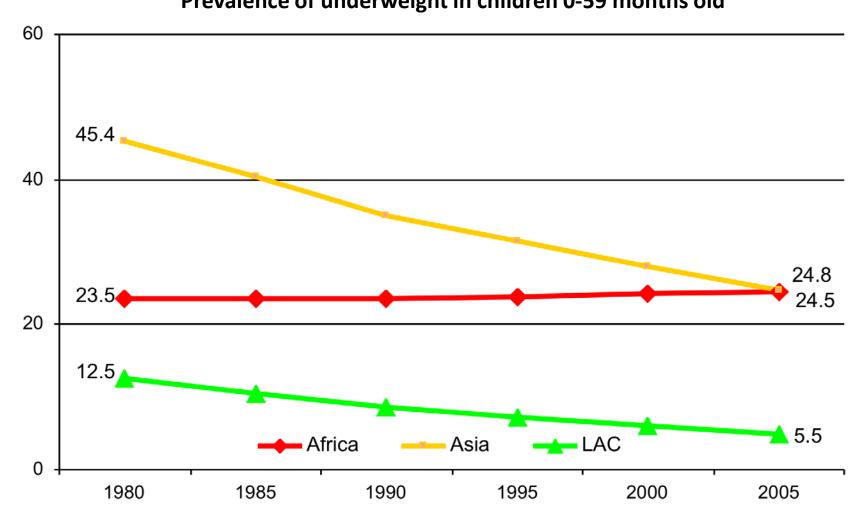
Robert Paarlberg
Presentation to President's Council of Advisors on
Science and Technology (PCAST)

March 12, 2010

VARIETIES OF FOOD INSECURITY

Starvation (famine)

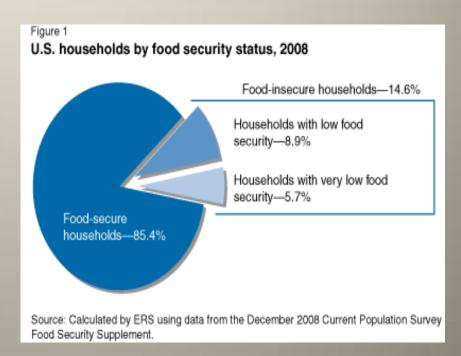
 Chronic under nutrition (long term energy deficits, micronutrient deficits, or both)


 Episodic under nutrition (temporary deficits, due to factors such as fluctuating income or food costs)

FAMINE IN RETREAT

Country	Famine Dates	Numbers dead
USSR (Ukraine)	1932-33 Collectivization	6 million
USSR (Leningrad)	1943 war	700,000
Bengal	1943-44 war "boom"	3 million
People's Republic of China	1958-61 Great Leap	30 million
African Sahel	1972-74 drought	300,000
Bangladesh	1974 floods	400,000
Ethiopia	1984-85 drought/war	1 million
Mozambique	1991-92 war	200,000
Somalia	1992 war	300,000
Sudan	1998 war	70,000
North Korea	1996-99 post-cold war	200,000 up to 3.5 million

CHRONIC UNDERNUTRITION IN RETREAT, EXCEPT IN AFRICA



EPISODIC UNDERNUTRITION: SOME DUBIOUS CLAIMS

2007-08 International price spike

2008-09 Recession in United States

CAUSES OF CHRONIC UNDERNUTRITION: LOW PRODUCTIVITY OF LABOR IN FARMING

CAUSES OF CHRONIC UNDERNUTRITION: PHYSICAL ISOLATION FROM MARKETS

CAUSES OF CHRONIC UNDERNUTRITION: SOCIAL MARGINALIZATION

DUELING APPROACHES TO HELPING THE RURAL POOR

Green Revolution Model

 Introduce modern agricultural science

 Avoid modern agricultural science

Food Sovereignty Model

Link the poor to private markets

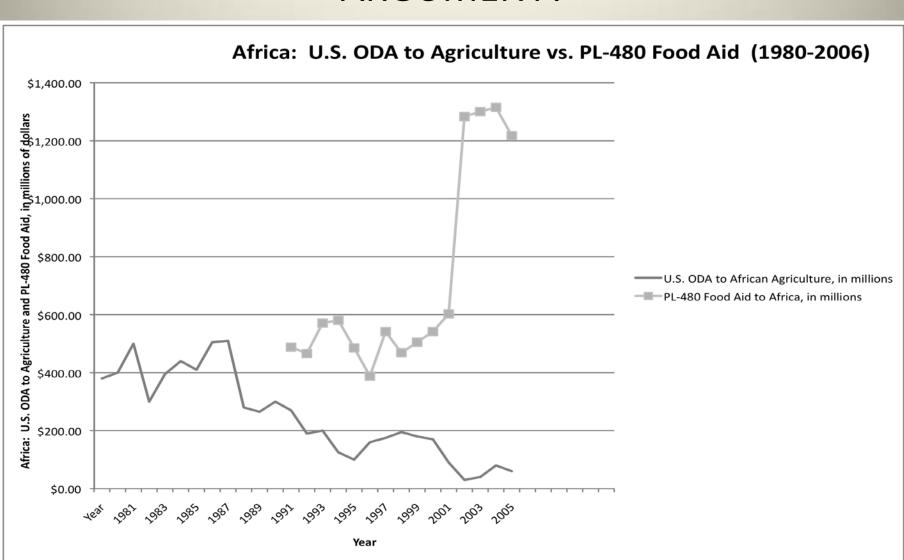
 Insulate the poor from private markets

DUELING STUDIES

2008 WDR

- Places trust in agricultural R&D, markets, public goods investments, and assistance to LDCs
- Offers quantified projection of future food production needs
- Executive summary offers average of 59 quantified factual assertions per page

2008 IAASTD REPORT


- Warns of the unintended consequences of technology and celebrates "local and traditional knowledges" in addition to formal science
- Does not offer projection of future food production needs
- Synthesis report offers average of 4 quantified factual assertion per page

IS SCIENCE-INTENSIVE FARMING SUSTAINABLE?

ENVIRONMENTAL
PERFORMANCE OF
AGRICULTURE IN
OECD COUNTRIES,
1990-2004:

VOLUME OF FOOD PRODUCTION	+ 5 PERCENT
LAND AREA IN FARMING	- 4 PERCENT
WATER USE IN IRRIGATION	- 9 PERCENT
EXCESS NITROGEN USE	- 17 PERCENT
PESTICIDE USE	- 5 PERCENT
GREENHOUSE GAS EMISSIONS FROM AGRICULTURE	- 3 PERCENT
INCREASE IN TOTAL ENERGY USE IN AGRICULTURE	1/6 THE RATE OF INCREASE IN THE REST OF THE ECONOMY

WHICH SIDE HAS BEEN WINNING THE ARGUMENT?

RECENT SCIENTIFIC ASSESSMENTS THAT DO NOT REQUIRE DUPLICATION

 A technical projection of global food production potential compared to growing requirements, out to 2050:

R.A. Fischer, Derek Byerlee, and G.O. Edmeades (2009). *Can Technology Deliver on the Yield Challenges to 2050?*, Rome: FAO

- A technical projection of the impacts of climate change on global food production out to 2050:
 - G. C. Nelson, M. Rosegrant, J. Koo, et al. (2009). *Climate Change: Impact on Agriculture and Costs of Adaptation*. Washington, D.C.: IFPRI

A GAP IN THE ASSESSMENT LITERATURE: JUDGING THE PROMISE OF PRECISION FARMING

SOURCES OF R&D, AND RATES OF INNOVATION?

- Applications of ICT, GPS, GIS, and remote infrared sensing
- Drip irrigation and laser-leveling
- Precision machinery and robotics
- Bioengineering

PATTERNS OF UPTAKE?

- Mechanical and ICT applications: large or highly capitalized farms only?
- Biological applications: scale neutral, and available to the poor?
- "ORPHAN" APPLICATIONS IN NEED OF PUBLIC R&D SUPPORT?